Lecture 4: Distance, Buffers, and Map Algebra

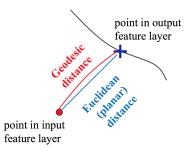
Paul A. Raschky,

University of St Gallen, October 2017

Today's Lecture

- 1. Distance
- 2. Buffer
- 3. Map Algebra

1. Distance


Measuring Distance in GIS

- Computes the distance from each point in the input feature layer to the nearest point, line or polygon in the near feature layer (within the maximum search radius).
- Geodesic, great-circle distance or orthodromic distance is the shortest distance between two points on the surface of a sphere.
- Euclidean distance is the straight-line distance between two points in Euclidean space.

1. Distance

Measuring Distance in GIS

- On a global / continental / national scale, distance measures based on an Euclidean geometry will not be correct.
- Map projections distort distance measures

Hjort & Poulson (2017) "The Arrival of Fast Internet and Employment in Africa"

- Estimate the effect of fast internet on employment outcomes in Africa.
- Identification Strategy:
 - Two Groups Individuals and firms in locations in Africa that are on the terrestrial network of Internet cables to those that are not.
 - Compare these two groups during the gradual arrival in coastal cities of submarine cables from Europe that greatly increase speed and capacity on the terrestrial network.

Hjort & Poulson (2017)

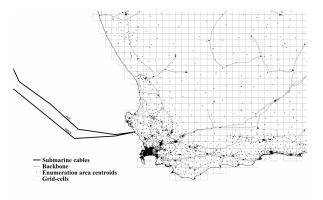


Image sources: Hjort & Poulson (2017)

Hjort & Poulson (2017) - Empirical Strategy

Difference-in-Differences Model

 $y_{i\mathbf{j}(i)t} = \alpha + \beta \text{SubmarineCables}_{it} \times \text{Connected}_i + \delta_{\mathbf{j}(i)} + \eta_t + \epsilon_{i\mathbf{j}(i)t}$

Hjort & Poulson (2017) - Results 1

							-		net use		
Outcome:	Location					Daily (0/1)			Weekly (0/1)		
Unit of analysis:					Individual Afrobarometer						
Sample:	e: Akamai										
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
SubmarineCables × Connected	0.245** (0.105)	0.252** (0.126)	0.409*** (0.149)	0.366** (0.167)	0.452** (0.206)	0.054** (0.025)	0.068** (0.028)	0.103* (0.052)	0.093*** (0.029)	0.103*** (0.032)	0.104** (0.049)
Observations Mean of Outcome	8562	7293	2373	2373	2373	4928 0.087	4928 0.087	4928 0.087	4928 0.172	4928 0.172	4928 0.172
Time FE Location FE	Yes Yes	Yes Yes	Yes Yes	No Yes	Yes Yes	Yes Yes	No Yes	Yes Yes	Yes Yes	No Yes	Yes Yes
# unique IP's > 10 Country×Time FE	No No	No No	Yes	Yes Yes	Yes	No No	No Yes	No No	No No	No Yes	No No
Connected × Time FE Including biggest cities	No Yes	No No	No No	No No	Yes	No No	No No	Yes	No No	No No	Yes

SubmarineCables × Connected

Observations

Grid-cell FE

Time FE

Mean of Outcome

Hjort & Poulson (2017) - Results 2

Panel A: Employment				
Outcome:				
Unit of analysis:				
Sample:	DHS	Afro- barometer	SA-QLFS	
	(1)	(2)	(3)	
SubmarineCables × Connected	0.031*** (0.010)	0.058*** (0.021)	0.030*** (0.010)	
Observations Mean of Outcome	186434 0.697	13176 0.580	322944 0.711	
Time FE Grid-cell FE	Yes Yes	Yes Yes	Yes Yes	
Panel B: Work-related outcomes from SA-QLFS				
Outcome:	Hours worked (asinh)	Wants to work more (0/1)	Formal employment (0/1)	Informal employment (0/1)
Unit of analysis:				
	(1)	(2)	(3)	(4)

-0.022***

(0.008)

547476

0.666

Yes

Yes

0.040***

(0.012)

322944

0.476

Yes

Yes

0.001

(0.005)

322944

0.121

Yes

Yes

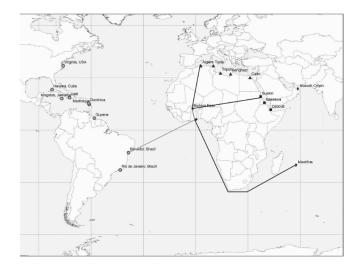
0.141***

(0.043)

321556

Yes

Yes


Exercise 4a - Point to nearest point

Exercise 4b - DIY Exercise Distance Matrix

Nunn (2008) "The Long-term Effects of Africa's Slave Trades"

- Estimate the effect of slave trade on contemporary African underdevelopment.
- Identification Strategy:
 - Number of slaves exported from each port in Africa.
 - IV: Distance to the to nearest slave trade centers

1.2. Point to Line - Distance Nunn (2008)

Nunn (2008) - Empirical Strategy

Second Stage

$$y_i = \alpha + \beta \ln \left(\frac{exports_i}{area_i} \right) + X'_i \gamma + \varepsilon_i$$

Nunn (2008) - Empirical Strategy

► First Stage

$$\ln\left(\frac{exports_i}{area_i}\right) = \delta + D'_i \Omega + X'_i \eta + \mu_i$$

Nunn (2008) - Results 1

First Stage. Dependent variable is slave exports, ln(exports/area)

Atlantic distance	-1.31^{***}	-1.74^{***}	-1.32^{*}	-1.69^{**}
	(0.357)	(0.425)	(0.761)	(0.680)
Indian distance	-1.10^{***}	-1.43^{***}	-1.08	-1.57^{*}
	(0.380)	(0.531)	(0.697)	(0.801)
Saharan distance	-2.43^{***}	-3.00^{***}	-1.14	-4.08^{**}
	(0.823)	(1.05)	(1.59)	(1.55)
Red Sea distance	-0.002	-0.152	-1.22	2.13
	(0.710)	(0.813)	(1.82)	(2.40)
F-stat	4.55	2.38	1.82	4.01
Colonizer fixed	No	Yes	Yes	Yes
effects				
Geography controls	No	No	Yes	Yes
Restricted sample	No	No	No	Yes
Hausman test	.02	.01	.02	.04
(p-value)				
Sargan test (p-value)	.18	.30	.65	.51

Nunn (2008) - Results 2

Second Stage. Dependent variable is log income in 2000, ln y						
ln(exports/area)	-0.208^{***}	-0.201^{***}	-0.286^{*}	-0.248^{***}		
	(0.053)	(0.047)	(0.153)	(0.071)		
	[-0.51, -0.14]	[-0.42, -0.13]	$[-\infty, +\infty]$	[-0.62, -0.12]		
Colonizer fixed effects	No	Yes	Yes	Yes		
Geography controls	No	No	Yes	Yes		
Restricted sample	No	No	No	Yes		
F-stat	15.4	4.32	1.73	2.17		
Number of obs.	52	52	52	42		

Exercise 4c - Point to nearest polyline

Create a polygon of an input feature's neighborhood

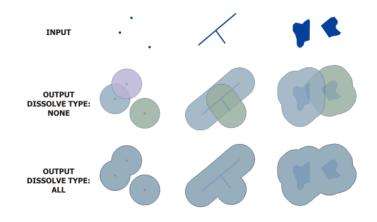


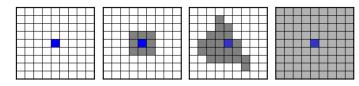
Image sources: desktop.arcgis.co

Miguel & Kremer (2009) "Worms: Identifying Impacts on Education and Health in the Presence of Treatment Externalities"

- Estimate the effect of slave trade on contemporary African underdevelopment.
- RCT evaluating school-based mass treatment with deworming drugs were randomly phased into schools
- \blacktriangleright \rightarrow estimation of overall program effects.
 - Need to identify the surrounding area of treated schools

Miguel & Kremer (2009) - Empirical Strategy

$$Y_{ijt} = a + \beta_1 \cdot T_{1it} + b_1 \cdot D_{1ij} + b_2 \cdot (T_{1it} * D_{1ij}) + X'_{ijt} \delta \\ + \sum_d (\gamma_d \cdot N_{dit}^T) + \sum_d (\phi_d \cdot N_{dit}) + u_i + e_{ijt}.$$


Exercise 4d - Buffer around schools

Cell-by-cell calculation across multiple raster datasets

- Arithmetic operations
 - with numbers (e.g., raster*2)
 - across several raster datasets (e.g., ras1 + ras2)
- Functions

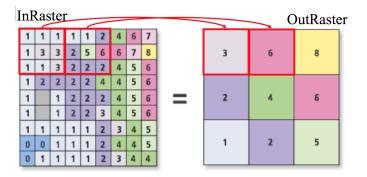
Functions

 Tomlin(1990) defines and organizes operations as local, focal, zonal, and global according to the spatial scope of the operations

Local Functions - Arithmetic


438	450	468	* 0 2040	133,5	137,2	142,6
455	481	473	* 0.3048	138.7	146.6	144.2
476	498	502		145.1	151.8	153.0

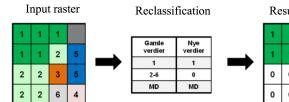
Local Functions - Arithmetic


5	4	1		3	2	1		8	6	2
2	1	2	+	1	4	5	=	3	5	7
4	2	1		2	7	3		6	9	4

Focal Functions:

- Focal functions process cell data depending on the values of neighboring cells.
- ► We define a kernel, window, or rover to use as the neighbourhood (3x3, 5x5 cells).

Focal Functions - Spatial Aggregation:



Focal Functions - Application in Economics:

- Nunn & Puga (2011) "Ruggedness: The Blessing of Bad Geography in Africa"
 - $\blacktriangleright \mathsf{Ruggedness} \to \mathsf{History} \to \mathsf{Current} \mathsf{ Development}$
 - Negative effects on transport costs and trade.
 - Protection to those being raided during the slave trades.

Exercise 4e - Calculating Ruggedness

Reclassify

Result raster

Reclassify

Old values	New values
1	1
2	1
3	0
4	0
5	0
6	0
NoData	NoData

Reclassify

- In ArcGIS: Spatial Analyst Tools Reclass Reclassify
- In QGIS: r.reclass